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Abstract—This paper presents an efficient search algorithm 
for fast block matching motion estimation(ME) for video 
applications. The algorithm uses two patterns for initial 
search and refined local search. For initial search, the 
proposed algorithm uses a square pattern adaptively by 
selecting the step size based on Maximum Absolute Value of 
predicted motion vector. This search pattern is aimed to 
reduce the computational complexity of the ME block and 
find the least error. If the least error point is in the middle of 
the pattern, it shows that image is still and terminates the 
search. If the least error point is other than the middle point, 
then it becomes a new origin for subsequent refined local 
search with the pattern as small diamond. This is iteratively 
continued until the final motion vector is found. The efficacy 
of the proposed algorithm is verified by comparing with 
existing search algorithms in terms of PSNR, 
computations/search points and elapsed time for motion 
estimation. Simulation results when compared with 
Exhaustive Search(ES) algorithm show that the proposed 
algorithm reduces number of search points by 96%.  The 
PSNR performance is close to the ES search method by 
99.8% and the elapsed time saving is 95%. This savings 
ensure that the proposed algorithm is suited for real-time 
applications. 

Keywords— Motion estimation, Search algorithm, Square 
pattern, Small Diamond, Block matching. 

I.  INTRODUCTION  

Motion Estimation is an important technique needed in 
any video image analysis. The video application areas like 
transmission, surveillance, data storage, conferencing and 
object tracking contain images of moving objects which 
needs large data to be transmitted or storage. The motion 
captured in a multiframe sequence of images includes 
translation and rotation of objects with respect to the 
camera movements. Hence using motion estimation 
techniques the actual displacement from one frame to the 
next can be easily identified. For interframe image coding, 
large levels of compression could be achieved if only one 
knew the trajectories traversed by the various objects[1]. 
The overwhelming complexity of motion estimation(ME) 
using a full search(ES) based brute-force approach has led 
to explosive research in ME. Most ME algorithms exhibit 
tradeoffs between quality and speed. Since ME is highly 
scene dependent, and, no one technique can be fully relied 
to generate good visual quality for all kinds of video scenes. 

The variety of techniques, such as motion starting point, 
motion search patterns, adaptive control to curb the search 
and avoidance of search stationary regions, etc. makes ME 
algorithm robust and efficient across the board. The 
performance of the full search method is considered to be 
“optimal” and its complexity is prohibitively high for 
software implementation. Furthermore, since the full search 
method aims to find the minimum sum of absolute 
differences(SADs), the presence of noise in a video can 
lead to suboptimal motion vectors(MVs). The presence of 
noise can also cause the full search to produce chaotic 
motion field for a smooth motion video, costing more bits 
to encode MVs with fewer bits left for encoding DCT 
coefficients with a given bit budget[2,3]. The most common 
ME method is the block matching technique, in which a 
video frame is divided into macroblock (MB) of 16×16 
pixels or blocks of 8×8 pixels and a search window(P) is 
defined. Each MB of the current frame is compared with 
the blocks of the reference frame within a search window. 
The displacement with the maximum correlation or the 
minimum distortion between the current block and the 
reference blocks within the search window is selected as the 
MV. 

A vast number of block matching algorithms(BMAs) 
have been proposed in[4]. Some of the  algorithms are: 
block pixel decimation[1], two dimensional logarithmic 
search algorithm(2D-LOG)[1] as well as their 
variations[5,6], three step search algorithm(TSS)[4], new 
three step search algorithm(NTSS)[3], Simple and efficient 
three step search(SESTSS), four step search 
algorithm(FSS)[7], diamond search (DS)[14,15], Adaptive 
rood pattern search(ARPS)[30], conjugate directional 
search[8,9,10], orthogonal direction search 
algorithm(OSA)[11], cross search[13], dynamic search 
window adjustment (DSWA)[12], gradient-based 
search[16], zone-based search[17], refined zone-based 
search[18] and parallel hierarchical one-dimensional search 
algorithm(PHODS)[19]. Hierarchical search[20,21,6,22] 
and multiresolution algorithms[23,24] perform ME at 
multiple levels successively, starting with the lowest 
resolution level using low-pass filtering or sub 
sampling[25]. Motion estimations are computationally very 
expensive but intelligent search strategies can reduce 
computational burden. Designing fast and accurate ME 
algorithm remains an open research problem. Hence author 
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has implemented a new search algorithms like Joint 
Adaptive Block Matching Search(JABMS) algorithm[28] 
and Adaptive Hexa-Diamond Search(AHDS) 
algorithm[29]. In a similar direction this new algorithm is 
proposed as an efficient search method. 

The paper is organized as follows: In Section 2, the 
proposed Adaptive square diamond search(ASDS) 
algorithm for motion estimation is discussed in detail. In 
Section 3, the performance of the proposed algorithm is 
demonstrated with the comparison results and analysis. 
Conclusions are drawn in Section 4. The ASDS algorithm is 
compared with existing search algorithms in terms of Peak 
signal to noise ratio(PSNR), number of computations in 
terms of search points and elapsed processing time. 

II. METHODOLOGY 

A.  Adaptive Square diamond search(ASDS) algorithm for 
fast block matching motion estimation 

 The most common ME method is the block matching 
algorithm(BMA), in which a video frame is divided into 
MBs of 16×16 pixels and a search window is defined. Each 
MB of the current frame is compared with the blocks of the 
reference frame within a search window. The displacement 
with the maximum correlation or the minimum distortion 
between the current block and the reference blocks within 
the search window is selected as the MV. To estimate MV 
using a BMA, an image is first divided into blocks of 16×16 
pixels. For simplicity, the blocks resulting from the 
partition of the current frame and the previous frame are 
called the current(C) and the reference(R) blocks, 
respectively. For each current block(C), the algorithm will 
find a representative block corresponding to it within a 
search area(P= ±7) surrounding the block in the previous 
frame with the same spatial position as C. The search area 
usually extends pixels in both the horizontal and vertical 
directions. The MV of C is then defined as the direction 
from the representative block to it. The optimality of the 
pattern based search depends on size of the search pattern 
and the magnitude of the predicted MV. Therefore different 
search patterns are used in accordance with the computed 
motion behavior for the current block. Hence importance is 
given to two issues. 1) To predetermine the motion 
behavior of the current block for effective motion 
estimation and 2) To adapt size and shape of the search 
pattern. For the first issue coherency of the motion in a 
frame is considered and for the second issue, two types of 
search patterns are used. i.e an adaptive rood pattern for 
initial search and a fixed size search pattern for repetitive 
fine search until the final MV is found. The algorithm uses 
a pre processing stage as in Figure.1 as region of 
support(ROS) which is only one block that is situated at 
immediate left to the current block to predict the MV using 
conventional search[30] method as 
 )(),( yMVxMV predictedpredicted . 

 

Fig.1:  A Type D Region of Support (ROS) to predict MV. 

The objective of the algorithm is to find a good initial 
starting point for the initial search so as to avoid 
unnecessary intermediate search and reduce the risk of 
being trapped into a local minimum in the case of long 

search path. The new starting point identified is as close to 
the global minimum as possible. Since the usage of more 
blocks involves higher computational complexity, the 
search will be done in a selected area(P). Figure.2 shows 
the search pattern used in the algorithm. For initial search, 
the proposed algorithm uses a square pattern adaptively by 
selecting the step size(S) based on maximum absolute value 
of predicted motion vector using Eq.1. Initially select the 
positions of points where the checking has to be done and 
initialized to zero. As one point is checked, it sets the 
corresponding element in the matrix to one. Algorithm 
starts from the top left of the image and move with stepsize 
of macro block. Macroblock count will keep track of how 
many blocks have been evaluated. If the macroblock is in 
the left most column then algorithm uses square pattern 
with Step Size = 2, else step size is maximum of absolute 
value of predicted motion vector values in x and y 
directions as in Eq.1.  

Is macroblock is leftmost block, then  S=2, 
else 

 (y)||MV(x)|,|MVS predictedpredictedmax  (1) 

where (x)MV predicted
and (y)MVpredicted are the x-

coordinate and y-coordinate of the predicted motion vector 
respectively. Initial pattern is symmetric with four search 
points located at vertices to form a square pattern, including 
one at the centre point there are five search points. The step 
size refers to the distance between the centre and the search 
points. Since the initial search pattern includes all the 
directions it can quickly detect any motion and the search 
will be directly jump to a region in the direction of the 
predicted MV. The major goal of initial search is to detect 
the moving object direction. Since the pattern is 
symmetrical it is beneficial, robust and easy to implement 
in hardware. 

 

 

 

 

 

 

 

Fig.2: Adaptive Square-Diamond Search Pattern. 

From[26,27] it is observed that at position(0,0) about 
98% of the stationary blocks have their SAD less than 512 
for MB size of 16×16. The algorithm exploits an optional 
phase called early elimination of search as its first step. If 
SAD at (0,0) is less than threshold(T=512), then consider 
that MB as stationary block. The MV is assigned as (0,0) 
then in the phase of early elimination of search, the search 
for a MB will be terminated immediately. i.e. SAD at (0,0) 
<  T, then MV=(0,0)  

In terms of block distortion method, the sum of absolute 
differences (SAD) is commonly used and is defined by Eq.2 
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Where ijC and ijR are the pixels being compared in 

current block and reference block respectively and N×N is 

Motion Vector
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image size. If the least error point is in the middle of the 
square pattern, it shows that image is still and terminates 
search. In addition to the square pattern it is desirable to add 
predicted MV into the search as it is likely to be similar to 
the target MV. Hence this will increase the probability of 
accurately detecting the motion in the initial stage. The 
initial idea is to decide the pattern size to use only one of 
the two components of the predicted MV that has larger 
magnitude because the magnitude of the MV’s component 
with greater absolute value is nearly close to the length of 
the MV. If the least error point is other than the middle 
point and if it is one of the points of the square pattern, then 
skip that point and the least error point will be a new origin 
for subsequent refined local search with the pattern as small 
diamond search pattern(SDSP).  

If | )(xMVpredicted | = S and )(yMVpredicted  = 0           

Or 

| )(yMVpredicted | = S and )(xMVpredicted  = 0 then algorithm 

need to check only five points otherwise six points has to be 
checked( including new origin).  

The SDSP comprising of five search points of unit step 
and is iteratively continued until the least error is found to 
be at the centre of the SDSP pattern. Then the final motion 
vector is found. 

III. RESULTS AND ANALYSIS 

The proposed algorithm uses MATLAB 7. Macroblock 
size is 16×16 and search area is ±7. For slow motion, 
medium motion and fast motion, six video sequences are 
considered. The results are tabulated in Table. I to VI. The 
performance analysis is done by considering average of 30 
frames. Quality of image is measured in terms of average 
PSNR. Computations are indicated as average number of 
search points. Time consumption during motion estimation 
and compensation is represented as average elapsed time in 
seconds. Time is calculated using Intel® Core™2Duo 
Processor @1.80GHz. The ES is producing good image 
quality in block based ME hence the proposed algorithm is 
compared with ES algorithm and ARPS algorithms. From 
the analysis it is found that the proposed ASDS algorithm 
works well for all motion image sequences. The ASDS 
algorithm offers high performance both in quality and 
speed. 

The performance is evaluated as in Eq.3 

100*
ES

ASDSES       

TABLE I.  COMPARISON RESULTS FOR MOM_DAUGHTER 
SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Mom 
daughter 

ARPS 8.58758 31.5014 0.169233 
DS 15.72943 31.52167 0.260467 
ES 202.05 31.6837 2.585933 
NTSS 20.39527 31.57977 0.288467 
SESTSS 16.29927 31.14073 0.241267 
FSS 17.8706 31.49847 0.259367 
TSS 23.07893 31.49477 0.3093 
AHDS 8.556663 32.6078 0.169267 
PROPOSED 
ASDS 8.344343 32.6043 0.1657 

In Table.I “Mom_daughter” image sequence is tested on 
different algorithms and results are tabulated. The proposed 
ASDS algorithm when compared with ES algorithm, shows 
PSNR gain as 0.93dB i.e. 2.91% improvement, 95.87% 
saving in search points and 93.6% saving in elapsed time. 
When compared with ARPS algorithm it shows 2.83% 
savings in terms of search points, 3.5% improvement in 
PSNR and 2.08% savings in elapsed time.  

TABLE II.  COMPARISON RESULTS FOR MOM SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Mom  

ARPS 8.60424 34.36097 0.169333 
DS 16.11123 34.3175 0.2645 
ES 202.05 37.3752 2.540133 

NTSS 20.93767 34.39137 0.293833 
SESTSS 16.36767 34.2703 0.2417 

FSS 18.0896 34.34103 0.264067 
TSS 23.031 34.35077 0.310867 

AHDS 8.32939 36.92953 0.163567 
PROPOSED 

ASDS 
7.973423 37.0342 0.155767 

 
In Table.II, the results are tabulated for “Mom” image 

sequence. When compared with ES algorithm, the 
proposed ASDS shows 96.05% reduction in search points, 
99.09% of PSNR and 93.87% saving in elapsed time. 
When compared with ARPS algorithm, it shows 7.34% 
saving in search points, PSNR gain of 2.67dB i.e. 7.78% 
improvement and 8.01% savings in elapsed time. 

TABLE III.  COMPARISON RESULTS FOR ALEX SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Alex  

ARPS 7.361103 42.17527 0.188033 
DS 13.6704 42.19653 0.285 
ES 204.28 42.2197 3.082733 

NTSS 16.85263 42.1739 0.294833 
SESTSS 16.679 41.77367 0.303667 

FSS 16.8455 42.07307 0.298333 
TSS 23.50027 42.00563 0.3854 

AHDS 8.15934 42.17127 0.206333 
PROPOSED 

ASDS 
8.01944 42.205 0.196333 

 
 
In Table.III, “Alex” image sequence is tested on different 

algorithms. The proposed ASDS algorithm when compared 
with ES algorithm shows 96.07% savings in search points, 
0.0147dB gain in PSNR i.e. 0.03% improvements and 
93.63% savings in elapsed time. When compared with 
ARPS algorithm, the proposed ASDS requires additional 
8.94% search points, 99.93% of PSNR and 4.41% 
additional elapsed time is required. 

 
In Table.IV, “Diskus” image sequence is tested on 

different algorithms. The proposed ASDS algorithm when 
compared with ES algorithm shows 94.51% savings in 
search points, 98.65% of PSNR and 91.7% savings in 
elapsed time. When compared with ARPS algorithm, the 
proposed ASDS requires 16.8% additional search points, 
0.1091dB gain in PSNR, i.e. 0.34% improvement and 
0.03% additional elapsed time is required. 
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TABLE IV.  COMPARISON RESULTS FOR DISKUS SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Diskus  

ARPS 9.608593 31.9674 0.217533 
DS 17.5385 31.79357 0.342733 
ES 204.28 32.294 3.003533 

NTSS 21.8714 31.85833 0.368233 
SESTSS 16.20297 30.9394 0.290133 

FSS 19.2059 31.73823 0.338033 
TSS 23.41857 31.8811 0.3745 

AHDS 11.04597 31.98273 0.239533 
PROPOSED 

ASDS 
11.22493 31.85833 0.2495 

 

In Table.V, “Flower garden” image sequence is tested 
on different algorithms. The proposed ASDS algorithm 
when compared with ES algorithm shows 93.1% savings in 
search points, PSNR of 98.06% and 89.6% savings in 
elapsed time. When compared with ARPS algorithm, the 
proposed ASDS requires 30.68% additional search points, 
0.092dB gain in PSNR i.e. 0.48% gain and 28.8% 
additional elapsed time is required. 

TABLE V.  COMPARISON RESULTS FOR FLOWER GARDEN SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Flower 
Garden  

ARPS 10.76347 19.05197 0.2026 
DS 20.12033 18.276 0.325433 
ES 202.05 19.52187 2.508267 

NTSS 26.0641 19.1431 0.365167 
SESTSS 15.43793 18.7972 0.2334 

FSS 20.5266 18.47623 0.310333 
TSS 23.35027 18.94893 0.314533 

AHDS 12.12463 19.07237 0.215633 
PROPOSED 

ASDS 
14.06617 19.1431 0.261 

TABLE VI.  COMPARISON RESULTS FOR TENNIS SEQUENCE. 

Sequence Search 
Algorithm 

Average 
Search 
Points 

Average 
PSNR in 

dB 

Average 
Elapsed 

time in sec 

 Tennis  

ARPS 7.292757 24.6744 0.146267 
DS 14.9618 24.79253 0.249 
ES 202.05 25.5635 2.504167 

NTSS 19.30943 24.93657 0.273967 
SESTSS 16.4579 24.43373 0.2453 

FSS 17.58963 24.78617 0.2563 
TSS 23.17957 24.82097 0.3115 

AHDS 8.0512 25.0049 0.160333 
PROPOSED 

ASDS 
7.773667 24.98413 0.1526 

 

In Table.VI, “Tennis” image sequence is tested on 
different algorithms. The proposed ASDS algorithm when 
compared with ES algorithm shows 96.2% savings in 
search points, PSNR of 97.75% and 93.91% savings in 
elapsed time. When compared with ARPS algorithm, the 
proposed ASDS requires 6.58% additional search points, 
gain in PSNR is 0.31dB i.e. 1.26% improvement and 4.32% 
additional elapsed time is required. 

Figure.3, 4 and 5 show small, medium and fast motion 
images respectively and the image sequences are shown 
with ith  frame as reference frame, i+2 frame as current 
frame, also the compensated images and the residual 
difference image using different existing algorithms like 
ES, TSS, SESTSS, NTSS, FSS, DS, ARPS, AHDS and the 
proposed ASDS algorithm. 

 
Fig.3:  Alex image sequence(small motion) with reference frame, current 

frame, compensated images and its residual images using existing 
algorithms. 

 
Fig.4:  Mom_daughter image sequence(medium motion) with reference 
frame, current frame, compensated images and its residual images using 

existing algorithms. 

 
Fig.5:  Tennis image sequence(fast motion) with reference frame, current 

frame, compensated images and its residual images using existing 
algorithms. 

 
Figure 6, 9, 12, 15, 18 and 21 show comparison of 

number of search points for all six image sequences. Figure 
7, 10, 13, 16, 19 and 22 show comparison results of PSNR 
for all six image sequences. Figure 8, 11, 14, 17, 20 and 23 
show comparison plots of elapsed time per frame for all six 
image sequences. 
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Fig.6:  Comparison of number of search points for Alex image sequence. 
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Fig.7:  Comparison of PSNR for Alex image sequence. 
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Fig.8:  Comparison of elapsed time per frame for Alex image sequence. 
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Fig.9:  Comparison of number of search points for Diskus image 

sequence. 
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Fig.10:  Comparison of PSNR for Diskus image sequence. 
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Fig.11:  Comparison of elapsed time per frame for Diskus image 

sequence. 
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Fig.12:  Comparison of number of search points for Mom_daughter image 

sequence. 
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Fig.13:  Comparison of PSNR for Mom_daughter image sequence. 
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Fig.14:  Comparison of elapsed time per frame for Mom_daughter image 

sequence. 
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Fig.15:  Comparison of number of search points for Mom image 

sequence. 
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Fig.16:  Comparison of PSNR for Mom image sequence. 
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Fig.17:  Comparison of elapsed time per frame for Mom image sequence. 
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Fig.18:  Comparison of number of search points for Flower Garden image 

sequence. 
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Fig.19:  Comparison of PSNR for Flower Garden image sequence. 
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Fig.20:  Comparison of elapsed time per frame for Flower Garden image 

sequence. 
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Fig.21: Comparison of number of search points for Tennis image 

sequence. 
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Fig.22:  Comparison of PSNR for Tennis image sequence. 
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Fig.23:  Comparison of elapsed time per frame for Tennis image 

sequence. 

IV. CONCLUSIONS 

The proposed algorithm is suited for all kinds of image 
sequences like small, medium and fast motion. The efficacy 
of our ASDS algorithm shows that an average 96% savings 
in search points, 99.8% achievement in PSNR and 95% 
savings in elapsed time with respect to ES algorithm. 
Compared with ARPS the proposed ASDS algorithm 
requires average of 8% additional search points, 1.55% gain 
in PSNR and 4.3% additional elapsed time. Hence the 
algorithm can be used where time saving and computations 
complexity reduction is needed.  
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