
Adaptive Square-Diamond Search(ASDS)
Algorithm for Fast Block Matching Motion

Estimation
M K Pushpa

Dept. of Instrumentation Technology,
M S Ramaiah Institute of Technology,

Bangalore, India

Dr.S.Sethu Selvi
Dept. of Electronics & Communication Engg.,

M S Ramaiah Institute of Technology,
Bangalore, India

Abstract—This paper presents an efficient search algorithm
for fast block matching motion estimation(ME) for video
applications. The algorithm uses two patterns for initial
search and refined local search. For initial search, the
proposed algorithm uses a square pattern adaptively by
selecting the step size based on Maximum Absolute Value of
predicted motion vector. This search pattern is aimed to
reduce the computational complexity of the ME block and
find the least error. If the least error point is in the middle of
the pattern, it shows that image is still and terminates the
search. If the least error point is other than the middle point,
then it becomes a new origin for subsequent refined local
search with the pattern as small diamond. This is iteratively
continued until the final motion vector is found. The efficacy
of the proposed algorithm is verified by comparing with
existing search algorithms in terms of PSNR,
computations/search points and elapsed time for motion
estimation. Simulation results when compared with
Exhaustive Search(ES) algorithm show that the proposed
algorithm reduces number of search points by 96%. The
PSNR performance is close to the ES search method by
99.8% and the elapsed time saving is 95%. This savings
ensure that the proposed algorithm is suited for real-time
applications.

Keywords— Motion estimation, Search algorithm, Square
pattern, Small Diamond, Block matching.

I. INTRODUCTION

Motion Estimation is an important technique needed in
any video image analysis. The video application areas like
transmission, surveillance, data storage, conferencing and
object tracking contain images of moving objects which
needs large data to be transmitted or storage. The motion
captured in a multiframe sequence of images includes
translation and rotation of objects with respect to the
camera movements. Hence using motion estimation
techniques the actual displacement from one frame to the
next can be easily identified. For interframe image coding,
large levels of compression could be achieved if only one
knew the trajectories traversed by the various objects[1].
The overwhelming complexity of motion estimation(ME)
using a full search(ES) based brute-force approach has led
to explosive research in ME. Most ME algorithms exhibit
tradeoffs between quality and speed. Since ME is highly
scene dependent, and, no one technique can be fully relied
to generate good visual quality for all kinds of video scenes.

The variety of techniques, such as motion starting point,
motion search patterns, adaptive control to curb the search
and avoidance of search stationary regions, etc. makes ME
algorithm robust and efficient across the board. The
performance of the full search method is considered to be
“optimal” and its complexity is prohibitively high for
software implementation. Furthermore, since the full search
method aims to find the minimum sum of absolute
differences(SADs), the presence of noise in a video can
lead to suboptimal motion vectors(MVs). The presence of
noise can also cause the full search to produce chaotic
motion field for a smooth motion video, costing more bits
to encode MVs with fewer bits left for encoding DCT
coefficients with a given bit budget[2,3]. The most common
ME method is the block matching technique, in which a
video frame is divided into macroblock (MB) of 16×16
pixels or blocks of 8×8 pixels and a search window(P) is
defined. Each MB of the current frame is compared with
the blocks of the reference frame within a search window.
The displacement with the maximum correlation or the
minimum distortion between the current block and the
reference blocks within the search window is selected as the
MV.

A vast number of block matching algorithms(BMAs)
have been proposed in[4]. Some of the algorithms are:
block pixel decimation[1], two dimensional logarithmic
search algorithm(2D-LOG)[1] as well as their
variations[5,6], three step search algorithm(TSS)[4], new
three step search algorithm(NTSS)[3], Simple and efficient
three step search(SESTSS), four step search
algorithm(FSS)[7], diamond search (DS)[14,15], Adaptive
rood pattern search(ARPS)[30], conjugate directional
search[8,9,10], orthogonal direction search
algorithm(OSA)[11], cross search[13], dynamic search
window adjustment (DSWA)[12], gradient-based
search[16], zone-based search[17], refined zone-based
search[18] and parallel hierarchical one-dimensional search
algorithm(PHODS)[19]. Hierarchical search[20,21,6,22]
and multiresolution algorithms[23,24] perform ME at
multiple levels successively, starting with the lowest
resolution level using low-pass filtering or sub
sampling[25]. Motion estimations are computationally very
expensive but intelligent search strategies can reduce
computational burden. Designing fast and accurate ME
algorithm remains an open research problem. Hence author

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5247

has implemented a new search algorithms like Joint
Adaptive Block Matching Search(JABMS) algorithm[28]
and Adaptive Hexa-Diamond Search(AHDS)
algorithm[29]. In a similar direction this new algorithm is
proposed as an efficient search method.

The paper is organized as follows: In Section 2, the
proposed Adaptive square diamond search(ASDS)
algorithm for motion estimation is discussed in detail. In
Section 3, the performance of the proposed algorithm is
demonstrated with the comparison results and analysis.
Conclusions are drawn in Section 4. The ASDS algorithm is
compared with existing search algorithms in terms of Peak
signal to noise ratio(PSNR), number of computations in
terms of search points and elapsed processing time.

II. METHODOLOGY

A. Adaptive Square diamond search(ASDS) algorithm for
fast block matching motion estimation

 The most common ME method is the block matching
algorithm(BMA), in which a video frame is divided into
MBs of 16×16 pixels and a search window is defined. Each
MB of the current frame is compared with the blocks of the
reference frame within a search window. The displacement
with the maximum correlation or the minimum distortion
between the current block and the reference blocks within
the search window is selected as the MV. To estimate MV
using a BMA, an image is first divided into blocks of 16×16
pixels. For simplicity, the blocks resulting from the
partition of the current frame and the previous frame are
called the current(C) and the reference(R) blocks,
respectively. For each current block(C), the algorithm will
find a representative block corresponding to it within a
search area(P= ±7) surrounding the block in the previous
frame with the same spatial position as C. The search area
usually extends pixels in both the horizontal and vertical
directions. The MV of C is then defined as the direction
from the representative block to it. The optimality of the
pattern based search depends on size of the search pattern
and the magnitude of the predicted MV. Therefore different
search patterns are used in accordance with the computed
motion behavior for the current block. Hence importance is
given to two issues. 1) To predetermine the motion
behavior of the current block for effective motion
estimation and 2) To adapt size and shape of the search
pattern. For the first issue coherency of the motion in a
frame is considered and for the second issue, two types of
search patterns are used. i.e an adaptive rood pattern for
initial search and a fixed size search pattern for repetitive
fine search until the final MV is found. The algorithm uses
a pre processing stage as in Figure.1 as region of
support(ROS) which is only one block that is situated at
immediate left to the current block to predict the MV using
conventional search[30] method as
 )(),(yMVxMV predictedpredicted .

Fig.1: A Type D Region of Support (ROS) to predict MV.

The objective of the algorithm is to find a good initial
starting point for the initial search so as to avoid
unnecessary intermediate search and reduce the risk of
being trapped into a local minimum in the case of long

search path. The new starting point identified is as close to
the global minimum as possible. Since the usage of more
blocks involves higher computational complexity, the
search will be done in a selected area(P). Figure.2 shows
the search pattern used in the algorithm. For initial search,
the proposed algorithm uses a square pattern adaptively by
selecting the step size(S) based on maximum absolute value
of predicted motion vector using Eq.1. Initially select the
positions of points where the checking has to be done and
initialized to zero. As one point is checked, it sets the
corresponding element in the matrix to one. Algorithm
starts from the top left of the image and move with stepsize
of macro block. Macroblock count will keep track of how
many blocks have been evaluated. If the macroblock is in
the left most column then algorithm uses square pattern
with Step Size = 2, else step size is maximum of absolute
value of predicted motion vector values in x and y
directions as in Eq.1.

Is macroblock is leftmost block, then S=2,
else

 (y)||MV(x)|,|MVS predictedpredictedmax (1)

where (x)MV predicted
and (y)MVpredicted are the x-

coordinate and y-coordinate of the predicted motion vector
respectively. Initial pattern is symmetric with four search
points located at vertices to form a square pattern, including
one at the centre point there are five search points. The step
size refers to the distance between the centre and the search
points. Since the initial search pattern includes all the
directions it can quickly detect any motion and the search
will be directly jump to a region in the direction of the
predicted MV. The major goal of initial search is to detect
the moving object direction. Since the pattern is
symmetrical it is beneficial, robust and easy to implement
in hardware.

Fig.2: Adaptive Square-Diamond Search Pattern.

From[26,27] it is observed that at position(0,0) about
98% of the stationary blocks have their SAD less than 512
for MB size of 16×16. The algorithm exploits an optional
phase called early elimination of search as its first step. If
SAD at (0,0) is less than threshold(T=512), then consider
that MB as stationary block. The MV is assigned as (0,0)
then in the phase of early elimination of search, the search
for a MB will be terminated immediately. i.e. SAD at (0,0)
< T, then MV=(0,0)

In terms of block distortion method, the sum of absolute
differences (SAD) is commonly used and is defined by Eq.2

 ||
1

0

1

0
ij

N

i

N

j
ij RCSAD   









 (2)

Where ijC and ijR are the pixels being compared in

current block and reference block respectively and N×N is

Motion Vector

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5248

image size. If the least error point is in the middle of the
square pattern, it shows that image is still and terminates
search. In addition to the square pattern it is desirable to add
predicted MV into the search as it is likely to be similar to
the target MV. Hence this will increase the probability of
accurately detecting the motion in the initial stage. The
initial idea is to decide the pattern size to use only one of
the two components of the predicted MV that has larger
magnitude because the magnitude of the MV’s component
with greater absolute value is nearly close to the length of
the MV. If the least error point is other than the middle
point and if it is one of the points of the square pattern, then
skip that point and the least error point will be a new origin
for subsequent refined local search with the pattern as small
diamond search pattern(SDSP).

If |)(xMVpredicted | = S and)(yMVpredicted = 0

Or

|)(yMVpredicted | = S and)(xMVpredicted = 0 then algorithm

need to check only five points otherwise six points has to be
checked(including new origin).

The SDSP comprising of five search points of unit step
and is iteratively continued until the least error is found to
be at the centre of the SDSP pattern. Then the final motion
vector is found.

III. RESULTS AND ANALYSIS

The proposed algorithm uses MATLAB 7. Macroblock
size is 16×16 and search area is ±7. For slow motion,
medium motion and fast motion, six video sequences are
considered. The results are tabulated in Table. I to VI. The
performance analysis is done by considering average of 30
frames. Quality of image is measured in terms of average
PSNR. Computations are indicated as average number of
search points. Time consumption during motion estimation
and compensation is represented as average elapsed time in
seconds. Time is calculated using Intel® Core™2Duo
Processor @1.80GHz. The ES is producing good image
quality in block based ME hence the proposed algorithm is
compared with ES algorithm and ARPS algorithms. From
the analysis it is found that the proposed ASDS algorithm
works well for all motion image sequences. The ASDS
algorithm offers high performance both in quality and
speed.

The performance is evaluated as in Eq.3

100*
ES

ASDSES      

TABLE I. COMPARISON RESULTS FOR MOM_DAUGHTER
SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Mom
daughter

ARPS 8.58758 31.5014 0.169233
DS 15.72943 31.52167 0.260467
ES 202.05 31.6837 2.585933
NTSS 20.39527 31.57977 0.288467
SESTSS 16.29927 31.14073 0.241267
FSS 17.8706 31.49847 0.259367
TSS 23.07893 31.49477 0.3093
AHDS 8.556663 32.6078 0.169267
PROPOSED
ASDS 8.344343 32.6043 0.1657

In Table.I “Mom_daughter” image sequence is tested on
different algorithms and results are tabulated. The proposed
ASDS algorithm when compared with ES algorithm, shows
PSNR gain as 0.93dB i.e. 2.91% improvement, 95.87%
saving in search points and 93.6% saving in elapsed time.
When compared with ARPS algorithm it shows 2.83%
savings in terms of search points, 3.5% improvement in
PSNR and 2.08% savings in elapsed time.

TABLE II. COMPARISON RESULTS FOR MOM SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Mom

ARPS 8.60424 34.36097 0.169333
DS 16.11123 34.3175 0.2645
ES 202.05 37.3752 2.540133

NTSS 20.93767 34.39137 0.293833
SESTSS 16.36767 34.2703 0.2417

FSS 18.0896 34.34103 0.264067
TSS 23.031 34.35077 0.310867

AHDS 8.32939 36.92953 0.163567
PROPOSED

ASDS
7.973423 37.0342 0.155767

In Table.II, the results are tabulated for “Mom” image

sequence. When compared with ES algorithm, the
proposed ASDS shows 96.05% reduction in search points,
99.09% of PSNR and 93.87% saving in elapsed time.
When compared with ARPS algorithm, it shows 7.34%
saving in search points, PSNR gain of 2.67dB i.e. 7.78%
improvement and 8.01% savings in elapsed time.

TABLE III. COMPARISON RESULTS FOR ALEX SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Alex

ARPS 7.361103 42.17527 0.188033
DS 13.6704 42.19653 0.285
ES 204.28 42.2197 3.082733

NTSS 16.85263 42.1739 0.294833
SESTSS 16.679 41.77367 0.303667

FSS 16.8455 42.07307 0.298333
TSS 23.50027 42.00563 0.3854

AHDS 8.15934 42.17127 0.206333
PROPOSED

ASDS
8.01944 42.205 0.196333

In Table.III, “Alex” image sequence is tested on different

algorithms. The proposed ASDS algorithm when compared
with ES algorithm shows 96.07% savings in search points,
0.0147dB gain in PSNR i.e. 0.03% improvements and
93.63% savings in elapsed time. When compared with
ARPS algorithm, the proposed ASDS requires additional
8.94% search points, 99.93% of PSNR and 4.41%
additional elapsed time is required.

In Table.IV, “Diskus” image sequence is tested on

different algorithms. The proposed ASDS algorithm when
compared with ES algorithm shows 94.51% savings in
search points, 98.65% of PSNR and 91.7% savings in
elapsed time. When compared with ARPS algorithm, the
proposed ASDS requires 16.8% additional search points,
0.1091dB gain in PSNR, i.e. 0.34% improvement and
0.03% additional elapsed time is required.

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5249

TABLE IV. COMPARISON RESULTS FOR DISKUS SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Diskus

ARPS 9.608593 31.9674 0.217533
DS 17.5385 31.79357 0.342733
ES 204.28 32.294 3.003533

NTSS 21.8714 31.85833 0.368233
SESTSS 16.20297 30.9394 0.290133

FSS 19.2059 31.73823 0.338033
TSS 23.41857 31.8811 0.3745

AHDS 11.04597 31.98273 0.239533
PROPOSED

ASDS
11.22493 31.85833 0.2495

In Table.V, “Flower garden” image sequence is tested
on different algorithms. The proposed ASDS algorithm
when compared with ES algorithm shows 93.1% savings in
search points, PSNR of 98.06% and 89.6% savings in
elapsed time. When compared with ARPS algorithm, the
proposed ASDS requires 30.68% additional search points,
0.092dB gain in PSNR i.e. 0.48% gain and 28.8%
additional elapsed time is required.

TABLE V. COMPARISON RESULTS FOR FLOWER GARDEN SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Flower
Garden

ARPS 10.76347 19.05197 0.2026
DS 20.12033 18.276 0.325433
ES 202.05 19.52187 2.508267

NTSS 26.0641 19.1431 0.365167
SESTSS 15.43793 18.7972 0.2334

FSS 20.5266 18.47623 0.310333
TSS 23.35027 18.94893 0.314533

AHDS 12.12463 19.07237 0.215633
PROPOSED

ASDS
14.06617 19.1431 0.261

TABLE VI. COMPARISON RESULTS FOR TENNIS SEQUENCE.

Sequence Search
Algorithm

Average
Search
Points

Average
PSNR in

dB

Average
Elapsed

time in sec

 Tennis

ARPS 7.292757 24.6744 0.146267
DS 14.9618 24.79253 0.249
ES 202.05 25.5635 2.504167

NTSS 19.30943 24.93657 0.273967
SESTSS 16.4579 24.43373 0.2453

FSS 17.58963 24.78617 0.2563
TSS 23.17957 24.82097 0.3115

AHDS 8.0512 25.0049 0.160333
PROPOSED

ASDS
7.773667 24.98413 0.1526

In Table.VI, “Tennis” image sequence is tested on
different algorithms. The proposed ASDS algorithm when
compared with ES algorithm shows 96.2% savings in
search points, PSNR of 97.75% and 93.91% savings in
elapsed time. When compared with ARPS algorithm, the
proposed ASDS requires 6.58% additional search points,
gain in PSNR is 0.31dB i.e. 1.26% improvement and 4.32%
additional elapsed time is required.

Figure.3, 4 and 5 show small, medium and fast motion
images respectively and the image sequences are shown
with ith frame as reference frame, i+2 frame as current
frame, also the compensated images and the residual
difference image using different existing algorithms like
ES, TSS, SESTSS, NTSS, FSS, DS, ARPS, AHDS and the
proposed ASDS algorithm.

Fig.3: Alex image sequence(small motion) with reference frame, current

frame, compensated images and its residual images using existing
algorithms.

Fig.4: Mom_daughter image sequence(medium motion) with reference
frame, current frame, compensated images and its residual images using

existing algorithms.

Fig.5: Tennis image sequence(fast motion) with reference frame, current

frame, compensated images and its residual images using existing
algorithms.

Figure 6, 9, 12, 15, 18 and 21 show comparison of

number of search points for all six image sequences. Figure
7, 10, 13, 16, 19 and 22 show comparison results of PSNR
for all six image sequences. Figure 8, 11, 14, 17, 20 and 23
show comparison plots of elapsed time per frame for all six
image sequences.

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5250

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
po

in
ts

Computaions for alex

ASDS

AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.6: Comparison of number of search points for Alex image sequence.

5 10 15 20 25 30
38

39

40

41

42

43

44

45

Frame Number

P
S
N
R
 in

 d
B

PSNR for alex

ASDS

AHDS
ARPS

DS

ES

NTSS

SESTSS
FSS

TSS

Fig.7: Comparison of PSNR for Alex image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Frame Number

T
im

e
in
 S

ec
s

Elapsed Time per Frame for alex

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.8: Comparison of elapsed time per frame for Alex image sequence.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
P
oi
nt
s

Computations for diskus

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.9: Comparison of number of search points for Diskus image

sequence.

5 10 15 20 25 30
24

26

28

30

32

34

36

Frame Number

P
S
N
R
 in

 d
B

PSNR for diskus

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.10: Comparison of PSNR for Diskus image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
Elapsed Time per Frame for diskus

Frame Number

T
im

e
in
 S

ec
s

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.11: Comparison of elapsed time per frame for Diskus image

sequence.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
P
oi
nt
s

Computaions for mom daughter

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.12: Comparison of number of search points for Mom_daughter image

sequence.

5 10 15 20 25 30
27

28

29

30

31

32

33

34

35

Frame Number

P
S
N
R
 in

 d
B

PSNR for mom duaghter

ASDS

AHDS
ARPS

DS

ES

NTSS

SESTSS
FSS

TSS

Fig.13: Comparison of PSNR for Mom_daughter image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frame Number

T
im

e
in
 S

ec
s

Elapsed Time for mom daughter

ASDS
AHDS

ARPS

DS

ES

NTSS

SESTSS

FSS
TSS

Fig.14: Comparison of elapsed time per frame for Mom_daughter image

sequence.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
po

in
ts

Computaions for mom

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.15: Comparison of number of search points for Mom image

sequence.

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5251

5 10 15 20 25 30
30

31

32

33

34

35

36

37

Frame Number

P
S
N
R
 in

 d
B

PSNR for mom

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.16: Comparison of PSNR for Mom image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frame Number

T
im

e
in
 S

ec
s

ProcessingTime for mom

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.17: Comparison of elapsed time per frame for Mom image sequence.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
po

in
ts

Computations for flowergarden

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.18: Comparison of number of search points for Flower Garden image

sequence.

5 10 15 20 25 30
16.5

17

17.5

18

18.5

19

19.5

20

20.5

Frame Number

P
S
N
R
 in

 d
B

PSNR for flowergarden

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.19: Comparison of PSNR for Flower Garden image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frame Number

T
im

e
in
 S

ec
s

Elapsed Time per Frame for flowergarden

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.20: Comparison of elapsed time per frame for Flower Garden image

sequence.

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Frame Number

S
ea

rc
h
P
oi
nt
s

Computations for stennis

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.21: Comparison of number of search points for Tennis image

sequence.

5 10 15 20 25 30
21

22

23

24

25

26

27

28

29

Frame Number

P
S
N
R
 in

 d
B

PSNR for stennis

ASDS

AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS

TSS

Fig.22: Comparison of PSNR for Tennis image sequence.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frame Number

T
im

e
in
 S

ec
s

Elapsed Time per Frame for Tennis

ASDS
AHDS

ARPS

DS

ES
NTSS

SESTSS

FSS
TSS

Fig.23: Comparison of elapsed time per frame for Tennis image

sequence.

IV. CONCLUSIONS

The proposed algorithm is suited for all kinds of image
sequences like small, medium and fast motion. The efficacy
of our ASDS algorithm shows that an average 96% savings
in search points, 99.8% achievement in PSNR and 95%
savings in elapsed time with respect to ES algorithm.
Compared with ARPS the proposed ASDS algorithm
requires average of 8% additional search points, 1.55% gain
in PSNR and 4.3% additional elapsed time. Hence the
algorithm can be used where time saving and computations
complexity reduction is needed.

REFERENCES
[1] Jaswant R. Jain and Anil K. Jain, “Displacement Measurement and

Its Application in Interframe Image Coding”, IEEE Transactions on
communications, Vol. COM-29, No. 12, Pg. 1799-1808, Dec 1981.

[2] P. A. A. Assuncao and M. Ghanbari, “A frequency-domain video
transcoder for dynamic bitrate reduction of MPEG-2 bit streams,”
IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 8, pp. 953–
967, Dec.1998.

[3] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm
for fast motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol.4, no. 4, pp. 438–442, Aug. 1994.

[4] T. Koga, K. Ilinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,” in Proc.
Nat Telecommun. Conf., New Orleans, LA, Nov. 1981, pp. G5.3.1–
G5.3.5.

[5] A. Netravali and B. Haskell, Digital Pictures Representation and
Compression. New York: Plenum, 1988.

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5252

[6] X. Lee and Y. Q. Zhang, “A fast hierarchical motion-compensation
scheme for video coding using block-feature matching,” IEEE
Trans. Circuits Syst. Video Technol., vol. 6, no. 6, pp. 627–635,
Dec. 1996.

[7] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
blockmatching,” IEEE Trans. Circuits Syst. Video Technol., vol. 6,
no. 3, pp. 313–317, Jun. 1996.

[8] B. Liu and A. Zaccartin, “New fast algorithms for estimation of
block motion vectors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 3, no. 2, pp. 148–157, Apr. 1993.

[9] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.
Com- 33, no. 8, pp. 888–896, Aug. 1985.

[10] B. Zeng, R. Li, and M. L. Liou, “Optimization of fast block motion
estimation algorithms,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 6, pp. 833–844, Dec. 1997.

[11] A. Puri, H. M. Hang, and D. L. Schilling, “An efficient block
matching algorithm for motion compensated coding,” in Proc. IEEE
ICASSP, 1987, pp. 2.4.1–25.4.4.

[12] L. W. Lee, J. F. Wang, J. Y. Lee, and J. D. Shie, “Dynamic
searchwindow adjustment and interlaced search block-matching
algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 1,
pp. 85–87, Feb. 1993.

[13] M. Ghanbari, “The cross-search algorithm for motion estimation,”
IEEE Trans. Commun., vol. 38, no. 7, pp. 950–953, Jul. 1990.

[14] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A
novel unrestricted center-biased diamond search algorithm for block
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.
8, no. 4, pp. 369–377, Aug. 1998.

[15] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast
block matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,
no. 2, pp. 287–290, Feb. 2000.

[16] L. K. Liu and E. Feig, “A block-based gradient descent search
algorithm for block-based motion estimation in video coding,”IEEE
Trans.Circuits Syst. Video Technol., vol. 6, no. 4, pp. 419–422, Aug.
1996.

[17] H. M. Jung, D. D. Hwang, C. S. Park, and H. S. Kim, “An annular
search algorithm for efficient motion estimation,” in Proc. Int.
Picture Coding Symp., 1996, pp. 171–174.

[18] Z. He and M. L. Liou, “A high performance fast search algorithm
for block matching motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 7, no. 5, pp. 826–828, Oct. 1997.

[19] L. G. Chen, W. T. Chen, Y. S. Jehng, and T. D. Chuieh, “An
efficient parallel motion estimation algorithm for digital image
processing,” IEEE Trans. Circuits Syst. Video Technol., vol. 1, no.
4, pp. 378–384, Dec.1991.

[20] Y. L. Chan and W. C. Siu, “Adaptive multiple-candidate
hierarchical search for block matching algorithm,” IEE Electron.
Lett., vol. 31, no. 19, pp. 1637–1639, Sep. 1995.

[21] C. K. Cheung and L. M. Po, “A hierarchical block motion
estimation algorithm using partial distortion measure,” in Proc.
ICIP’97, vol. 3, 1997, pp. 606–609.

[22] X. Song, T. Chiang, and Y. Q. Zhang, “A scalable hierarchical
motion estimation algorithm for MPEG-2,” in Proc. ICIP, 1998,
pp.IV126–IV129.

[23] M. Bierling, “Displacement estimation by hierarchical
blockmatching,” SPIE Vis. Commun. Image Process., pp. 942–951,
May 1998.

[24] Y. L. Chan and W. C. Siu, “Adaptive multiple-candidate
hierarchical search for block matching algorithm,” IEE Electron.
Lett., vol. 31, no.19, pp. 1637–1639, Sep. 1995.

[25] Y. Q. Shi and X. Xia, “A thresholding multiresolution block
matching algorithm,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 2, pp.437–440, Apr. 1997

[26] P. I. Hosur and K. K. Ma, “Motion vector field adaptive fast motion
estimation,” presented at the Second Int. Conf. Inf., Commun.,
Signal Process., Singapore, Dec. 1999.

[27] Optimization Model Version 1.0, ISO/IEC JTC1/SC29/WG11
N3324, Mar. 2000.

[28] M K Pushpa and V K Anathashayana “Joint Adaptive Block
Matching Search(JABMS) Algorithm for Motion Estimation”,
International Journal of Recent Trends in Engineering(IJRTE), Vol
2, No. 2, ACEEE, Academy publishers, Finland, pp.212-216, Nov
2009.

[29] M K Pushpa and Dr. S.Sethu Selvi “Adaptive Hexa-Diamond
search(AHDS) Algorithm for Fast Block Matching Motion
Estimation,” Proceedings of ICAdC 2012, Advances in Intelligent
Systems and Computing, Vol.174, pp. 85–93, Springer Series 2012,
July. 2012.

[30] Yao Nie, and Kai-Kuang Ma, “Adaptive Rood Pattern Search for
Fast Block-Matching Motion Estimation”, IEEE Transactions on
Image Processing, Vol. 11, No. 12, pp. 1442-1449, Dec 2002.

M K Pushpa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5247-5253

5253

